Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k\rangle$ of oddly even length

نویسندگان

  • Yonglin Cao
  • Yuan Cao
  • Fang-Wei Fu
چکیده

Let F2m be a finite field of characteristic 2 and R = F2m [u]/〈u 〉 = F2m + uF2m + . . . + u k−1 F2m (u k = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length 2n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length 2n is provided and a formula to count the number of codewords in each code is given. Then a formula to calculate the number of cyclic codes over R of length 2n is obtained. Moreover, the dual code of each cyclic code and self-dual cyclic codes over R of length 2n are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete classification of $(\delta+\alpha u^2)$-constacyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^4\rangle$ of oddly even length

Let F2m be a finite field of cardinality 2 , R = F2m [u]/〈u 〉) and n is an odd positive integer. For any δ, α ∈ F2m , ideals of the ring R[x]/〈x 2n − (δ+αu)〉 are identified as (δ + αu)-constacyclic codes of length 2n over R. In this paper, an explicit representation and enumeration for all distinct (δ + αu)constacyclic codes of length 2n over R are presented.

متن کامل

Skew cyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$

In this paper, we study skew cyclic codes with arbitrary length over the ring $R=\mathbb{F}_{p}+u\mathbb{F}_{p}$ where $p$ is an odd prime and $% u^{2}=0$. We characterize all skew cyclic codes of length $n$ as left $% R[x;\theta ]$-submodules of $R_{n}=R[x;\theta ]/\langle x^{n}-1\rangle $. We find all generator polynomials for these codes and describe their minimal spanning sets. Moreover, an...

متن کامل

On cyclic DNA codes over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$

In the present paper we study the structure of cyclic DNA codes of even length over the ring F2 + uF2 + u 2 F2 where u 3 = 0. We investigate two presentations of cyclic codes of even length over F2 + uF2 + u 2 F2 satisfying the reverse constraint and the reverse-complement constraint.

متن کامل

Cyclic codes over the ring $\mathbb{F}_p[u,v] / \langle u^k,v^2,uv-vu\rangle$

Let p be a prime number. In this paper, we discuss the structures of cyclic codes over the ring F p [u, v]/u k , v 2 , uv − vu. We find a unique set of generators for these codes. We also study the rank and the Hamming distance of these codes.

متن کامل

Negacyclic codes of odd length over the ring $\mathbb{F}_p[u, v]/\langle u^2, v^2, uv-vu\rangle$

We discuss the structure of negacyclic codes of odd length over the ring Fp[u, v]/〈u , v, uv − vu〉. We find the unique generating set, the rank and the minimum distance for these negacyclic codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.05413  شماره 

صفحات  -

تاریخ انتشار 2015